ARM: OMAP2+: hwmod code/clockdomain data: fix 32K sync timer
Kevin discovered that commit c8d82ff6 ("ARM: OMAP2/3: hwmod data: Add 32k-sync timer data to hwmod database") broke CORE idle on OMAP3. This prevents device low power states. The root cause is that the 32K sync timer IP block does not support smart-idle mode[1], and so the hwmod code keeps the IP block in no-idle mode while it is active. This in turn prevents the WKUP clockdomain from transitioning to idle. There is a hardcoded sleep dependency that prevents the CORE_L3 and CORE_CM clockdomains from transitioning to idle when the WKUP clockdomain is active[2], so the chip cannot enter any device low power states. It turns out that there is no need to take the 32k sync timer out of idle. The IP block itself probably does not have any native idle handling at all, due to its simplicity. Furthermore, the PRCM will never request target idle for this IP block while the kernel is running, due to the sleep dependency that prevents the WKUP clockdomain from idling while the CORE_L3 clockdomain is active. So we can safely leave the 32k sync timer in target-force-idle mode, even while we continue to access it. This workaround is implemented by defining a new clockdomain flag, CLKDM_ACTIVE_WITH_MPU, that indicates that the clockdomain is guaranteed to be active whenever the MPU is inactive. If an IP block's main functional clock exists inside this clockdomain, and the IP block does not support smart-idle modes, then the hwmod code will place the IP block into target force-idle mode even when enabled. The WKUP clockdomains on OMAP3/4 are marked with this flag. (On OMAP2xxx, no OCP header existed on the 32k sync timer.) Other clockdomains also should be marked with this flag, but those changes are deferred until a later merge window, to create a minimal fix. Another theoretically clean fix for this problem would be to implement PM runtime-based control for 32k sync timer accesses. These PM runtime calls would need to located in a custom clocksource, since the 32k sync timer is currently used as an MMIO clocksource. But in practice, there would be little benefit to doing so; and there would be some cost, due to the addition of unnecessary lines of code and the additional CPU overhead of the PM runtime and hwmod code - unnecessary in this case. Another possible fix would have been to modify the pm34xx.c code to force the IP block idle before entering WFI. But this would not have been an acceptable approach: we are trying to remove this type of centralized IP block idle control from the PM code. This patch is a collaboration between Kevin Hilman <khilman@ti.com> and Paul Walmsley <paul@pwsan.com>. Thanks to Vaibhav Hiremath <hvaibhav@ti.com> for providing comments on an earlier version of this patch. Thanks to Tero Kristo <t-kristo@ti.com> for identifying a bug in an earlier version of this patch. Thanks to Benoît Cousson <b-cousson@ti.com> for identifying some bugs in several versions of this patch and for implementation comments. References: 1. Table 16-96 "REG_32KSYNCNT_SYSCONFIG" of the OMAP34xx TRM Rev. ZU (SWPU223U), available from: http://www.ti.com/pdfs/wtbu/OMAP34x_ES3.1.x_PUBLIC_TRM_vzU.zip 2. Table 4-72 "Sleep Dependencies" of the OMAP34xx TRM Rev. ZU (SWPU223U) 3. ibid. Cc: Tony Lindgren <tony@atomide.com> Cc: Vaibhav Hiremath <hvaibhav@ti.com> Cc: Benoît Cousson <b-cousson@ti.com> Cc: Tero Kristo <t-kristo@ti.com> Tested-by: Kevin Hilman <khilman@ti.com> Signed-off-by: Paul Walmsley <paul@pwsan.com> Signed-off-by: Kevin Hilman <khilman@ti.com>
Loading
Please register or sign in to comment