x86, numa: Fix cpu to node mapping for sparse node ids
NUMA boot code assumes that physical node ids start at 0, but the DIMMs that the apic id represents may not be reachable. If this is the case, node 0 is never online and cpus never end up getting appropriately assigned to a node. This causes the cpumask of all online nodes to be empty and machines crash with kernel code assuming online nodes have valid cpus. The fix is to appropriately map all the address ranges for physical nodes and ensure the cpu to node mapping function checks all possible nodes (up to MAX_NUMNODES) instead of simply checking nodes 0-N, where N is the number of physical nodes, for valid address ranges. This requires no longer "compressing" the address ranges of nodes in the physical node map from 0-N, but rather leave indices in physnodes[] to represent the actual node id of the physical node. Accordingly, the topology exported by both amd_get_nodes() and acpi_get_nodes() no longer must return the number of nodes to iterate through; all such iterations will now be to MAX_NUMNODES. This change also passes the end address of system RAM (which may be different from normal operation if mem= is specified on the command line) before the physnodes[] array is populated. ACPI parsed nodes are truncated to fit within the address range that respect the mem= boundaries and even some physical nodes may become unreachable in such cases. When NUMA emulation does succeed, any apicid to node mapping that exists for unreachable nodes are given default values so that proximity domains can still be assigned. This is important for node_distance() to function as desired. Signed-off-by: David Rientjes <rientjes@google.com> LKML-Reference: <alpine.DEB.2.00.1012221702090.3701@chino.kir.corp.google.com> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Loading
Please register or sign in to comment